http://www.guardian.co.uk/science/2011/sep/22/faster-than-light-particles-neutrinos
It is a concept that forms a cornerstone of our understanding of the universe and the concept of time – nothing can travel faster than the speed of light.
The trip would take a beam of light 2.4 milliseconds to complete, but after running the experiment for three years and timing the arrival of 15,000 neutrinos, the scientists discovered that the particles arrived at Gran Sasso sixty billionths of a second earlier, with an error margin of plus or minus 10 billionths of a second.
The measurement amounts to the neutrinos travelling faster than the speed of light by a fraction of 20 parts per million. Since the speed of light is 299,792,458 metres per second, the neutrinos were evidently travelling at 299,798,454 metres per second.
The result is so unlikely that even the research team is being cautious with its interpretation. Physicists said they would be sceptical of the finding until other laboratories confirmed the result.
Antonio Ereditato, coordinator of the Opera collaboration, told the Guardian: "We are very much astonished by this result, but a result is never a discovery until other people confirm it.
"When you get such a result you want to make sure you made no mistakes, that there are no nasty things going on you didn't think of. We spent months and months doing checks and we have not been able to find any errors.
"If there is a problem, it must be a tough, nasty effect, because trivial things we are clever enough to rule out."
The Opera group said it hoped the physics community would scrutinise the result and help uncover any flaws in the measurement, or verify it with their own experiments.
Subir Sarkar, head of particle theory at Oxford University, said: "If this is proved to be true it would be a massive, massive event. It is something nobody was expecting.
It is a concept that forms a cornerstone of our understanding of the universe and the concept of time – nothing can travel faster than the speed of light.
But now it seems that researchers working in one of the world's largest physics laboratories, under a mountain in central Italy, have recorded particles travelling at a speed that is supposedly forbidden by Einstein's theory of special relativity.
Scientists at the Gran Sasso facility will unveil evidence on Friday that raises the troubling possibility of a way to send information back in time, blurring the line between past and present and wreaking havoc with the fundamental principle of cause and effect.
They will announce the result at a special seminar at Cern – the European particle physics laboratory – timed to coincide with the publication of a research paper (pdf) describing the experiment.
Researchers on the Opera (Oscillation Project with Emulsion-tRacking Apparatus) experiment recorded the arrival times of ghostly subatomic particles called neutrinos sent from Cern on a 730km journey through the Earth to the Gran Sasso lab.The trip would take a beam of light 2.4 milliseconds to complete, but after running the experiment for three years and timing the arrival of 15,000 neutrinos, the scientists discovered that the particles arrived at Gran Sasso sixty billionths of a second earlier, with an error margin of plus or minus 10 billionths of a second.
The measurement amounts to the neutrinos travelling faster than the speed of light by a fraction of 20 parts per million. Since the speed of light is 299,792,458 metres per second, the neutrinos were evidently travelling at 299,798,454 metres per second.
The result is so unlikely that even the research team is being cautious with its interpretation. Physicists said they would be sceptical of the finding until other laboratories confirmed the result.
Antonio Ereditato, coordinator of the Opera collaboration, told the Guardian: "We are very much astonished by this result, but a result is never a discovery until other people confirm it.
"When you get such a result you want to make sure you made no mistakes, that there are no nasty things going on you didn't think of. We spent months and months doing checks and we have not been able to find any errors.
"If there is a problem, it must be a tough, nasty effect, because trivial things we are clever enough to rule out."
The Opera group said it hoped the physics community would scrutinise the result and help uncover any flaws in the measurement, or verify it with their own experiments.
Subir Sarkar, head of particle theory at Oxford University, said: "If this is proved to be true it would be a massive, massive event. It is something nobody was expecting.
No comments:
Post a Comment